
Frontiers in Computing and Intelligent Systems
ISSN: 2832-6024 | Vol. 3, No. 1, 2023

78

Optimizing WinAFL for Image Parsing Engine
Vulnerability Discovery in PDF Readers

Yue Zhang*, Zhibo Du

School of Cybersecurity, Chengdu University of Information Technology, Chengdu, 610200, China

* Corresponding author: Yue Zhang (Email: zhangyue@6lack.cn)

Abstract: Fuzzing is a kind of automated vulnerability discovering technique using black-box testing ideas. The PDF file

format is very complex and can be embedded in many other formats, providing opportunities for malicious code to hide. In this

paper, to solve the problem of high blindness in fuzzing for PDF files by the fuzzing tool WinAFL, we propose a targeted fuzzing

scheme for the image parsing engine in PDF readers, optimize WinAFL purposefully, and conduct comparison experiments with

the original WinAFL. The experiments show that the optimized fuzzing tool can find an average of 69.43% more unique crashes

and 43.28% more path discoveries per unit of time for commonly used PDF readers. So, the method can improve the number of

path discoveries and unique crash discoveries, proving the effectiveness and practicality of the method and using this method as

an inspiration to propose an improved method for other embedded formats in PDF as the next research direction.

Keywords: Fuzzing; PDF file format; Exploitation of vulnerabilities.

1. Introduction

With the development of anti-virus technology, the spread

of malicious executable programs has become very difficult,

and hackers prefer to use documents as the first step in

implementing attacks in APT attacks. Portable Document

Format (a.k.a. PDF) is one of the most popular file formats in

the world, and PDF’s complex document structure gives

malicious code room to hide.

Fuzzing is currently the most popular vulnerability

detection technique. Its basic principle is to mutate the seed

file randomly to generate a large number of new program

inputs, then execute it in the target program, track the target

program running state information, and finally analyze the

target program crash information to discover program

vulnerabilities [1]. Due to the lack of guidance, the blindness

of traditional fuzzing seriously affects the efficiency of

vulnerability detection. This gave birth to gray-box fuzzing,

which obtains program runtime information with the help of

lightweight program analysis and guides the fuzzing process

with the help of runtime information to improve the efficiency

of vulnerability detection [2]

Generally, fuzzing can be divided into generation-based

and mutation-based fuzzing. Generative-based fuzzing [3]

usually requires the tester to provide the target program

input's formatting information or syntax knowledge. The

fuzzing program automatically generates program input for

vulnerability detection based on the inherent format

description files for different target programs. Therefore, this

approach is suitable for structured program inputs, such as

HTML, JavaScript, etc., and represents fuzzer such as

AFLsmart [4]. On the other hand, mutation-based fuzzing

does not require familiarity with the format of the input files.

Fuzzing tools generate new program input by a set of

predefined mutation rules, representing fuzzer such as AFL

[5], AFLFast [6], and WinAFL.

In this paper, we optimize the variation method in WinAFL

for the parsing engine of image format in PDF parser and

propose a targeted fuzzing scheme for the image parsing

engine in PDF reader to reduce the blindness of the WinAFL

fuzzer for fuzzing of PDF files, which considers the test cases

that can explore new execution paths to be of high value.

2. Related Knowledge and Technology

The method of this paper is to realize the vulnerability

mining for PDF files on WinAFL, so this section first

introduces the general process of the black box path feedback

fuzzing test method based on DynamoRIO dynamic binary

instrumentation and then briefly introduces the file structure

of PDF files.

2.1. WinAFL Based on DynamoRIO

2.1.1. Dynamic binary instrumentation

Dynamic Binary Instrumentation (DBI) [7] is a technique

that enables dynamic analysis of binary programs by injecting

probe code, which is then executed as regular instructions.

With DynamoRIO, we can monitor the running code of the

program, and it also allows us to modify the program’s code.

To be precise, DynamoRIO is a process virtual machine on

which all the code of the monitored program is transferred to

the buffer space for simulated execution. The specific

architecture is shown in Figure 1.

Figure 1. Architecture design of DynamoRIO

Among them, the basic block is an important concept.

Suppose all instructions in a monitoring process are split

along the boundary of control transfer instructions. In that

case, they will be split into many blocks that start with an

instruction but end with a control transfer instruction, as

79

shown in Figure 2.

Figure 2. The concept of basic block

These instruction blocks are the basic block concept

defined in DynamoRIO, that is, the basic unit of operation.

DynamoRIO simulates running instructions in one basic

block at a time. When these instructions are finished, they will

be run in another basic block through a context switch, and so

on, until the monitored process is finished.

2.1.2. AFL Overview

AFL is a coverage-guided grey-box testing tool [5]. Based

on genetic algorithm, it uses compile-time instrumentation to

determine whether a new internal state of the target program

is triggered by the coverage information feedback of the

program under test to find interesting test cases and guide the

fuzzing strategy, which greatly improves the coverage of the

test tool. Its specific approximate steps are shown in Figure 3.

Seed File

Queue

Corpus

Distillation

arithmeticbitfilp interest

dictionary havoc splice

Mutation

Seed File

Testcase

Target

Program

Trigger the

crash?

Save the Testcase

And record crash

Trigger the

new path?
Testcase

write_to_testcase

Input

Yes

NoYes

add

No

Figure 3. Architecture design of DynamoRIO

1) Use afl-cmin to perform corpus distillation on the

original seed files and remove duplicate files based on path

feedback. This step is non-essential and is mainly used when

there are many initial files. The generated set of files is added

to the seed file queue.

2) Select the preferred seed set from the seed queue

according to the seed selection algorithm.

3) Select a seed file according to the preset change.

4) For mutating the file using multiple mutation algorithms,

many test cases are generated cyclically for testing.

5) If a program crash is triggered, a potential vulnerability

may exist, store the file that triggered the crash and record the

Crash.

6) If a new path is found, add the test cases for that path to

the seed queue.

7) When all the test cases generated by this seed are tested,

continue from Step 3 and so on.

2.1.3. WinAFL Fuzzer

In the field of fuzzing, AFL is the most representative

fuzzing tool, but because of the reason of its code design, it

does not support the Windows platform, and the WinAFL[8]

project is the transplant of this Fuzzer on the Windows

platform. AFL uses compile-time instrumentation and genetic

algorithm to implement its functions, while WinAFL uses

DynamoRIO dynamic instrumentation instead of AFL

compile-time instrumentation to adapt to the Windows

platform, which is mainly closed-source software.

Through binary dynamic instrumentation, DynamoRIO

can feed back the coverage information of the binary program

to WinAFL, and the coverage is passed through the pipeline.

In general, the whole WinAFL execution process is roughly

as follows:

1) afl_fuzz.exe interacts with the target process by creating

a named pipe and memory mapping. The pipe is used to send

and receive commands to interact with the other process, and

the memory mapping is mainly used to record the coverage

information;

2) Coverage record is mainly through

drmgr_register_bb_instrumentation_event to set the callback

function executed by BB. The coverage is recorded by

instrument_bb_coverrage or instrument_edge_coverage, and

if new execution paths are found, the samples are placed into

the queue directory for subsequent file mutation to improve

code coverage.

3) After the target process executes to the target function,

pre_fuzz_handler will be called to store context information,

including registers and running parameters;

4) After the target function is launched, the

post_fuzz_handler function will be called to record the reply

context information so as to execute the original target

function and go back to the second step;

5) When the number of target function runs reaches the

number of specified loop calls, the process will be interrupted

and exit.

2.2. PDF

2.2.1. Physical Structure

PDF documents are constructed hierarchically from a set of

interconnected objects, according to the Adobe PDF

Reference [9]. Its physical structure consists of four basic

components, as shown in Figure 4.

Figure 4. The physical structure of a PDF document

1) Header: The type identification of a PDF document is

80

located in the header, which starts with "%PDF-" followed by

the version of the PDF specification that the document

conforms to. For example, "%PDF-1.7" indicates that the

document conforms to the PDF 1.7 version specification.

2) Body: The main content of the document is stored in the

body, which consists of multiple indirect objects that can store

text, images, and other content. Indirect objects can also

record information such as font, color, size, image content,

layout, position, and the relationship and display order

between objects. When storing this content, PDF documents

generally use existing compression methods to save storage

space and document transmission costs.

3) Cross-reference table (Xref): Starting with the keyword

"Xref", this section records the byte offsets of each object

relative to the starting position of the document, in bytes.

4) Trailer: Starting with "trailer" and ending with

"%%EOF", the trailer stores two important pieces of

information: the root object identified by the attribute

keyword "Root", and the byte offset position of the cross-

reference table relative to the beginning of the document,

identified by the keyword "startxref".

2.2.2. Logical Structure

PDF documents are a tree-like logical structure, with the

root node "Catalog" serving as the connection point between

the physical and logical structure of the document, as shown

in Figure 5.

Figure 5: The logical structure of a PDF document

When a PDF reader opens a PDF document, it first locates

the Catalog from the Root field in the Trailer and then uses

this node to parse the page, directory, and link information.

The Catalog contains a wealth of information, including a

Page tree, an Outline hierarchy, and Article threads. The Page

tree is a collection of descriptions for all the pages in the PDF

document, used to organize all Page objects. The Page object,

in turn, describes the attributes, resources, and other

information specific to a PDF page.

3. Optimizing Fuzzing for PDF File

This article proposes an optimization method for WinAFL,

which involves hijacking the "write_to_testcase" function in

the main fuzzer part of the WinAFL project to achieve

mutation of the image section in PDF documents. By using

this method, more efficient and accurate testing can be carried

out for the image parsing part in PDF parsing software,

thereby improving the efficiency and quality of fuzzing test

cases.

3.1. The write_to_testcase Function

The write_to_testcase function is a key function in

WinAFL. It is used to write the test cases generated by the

fuzzer to disk for subsequent execution and analysis.

The function is located in the fuzzer.c file of WinAFL, and

its prototype is as follows:

void write_to_testcase(void* mem, size_t len, char*

filename)

In the process of fuzzing with WinAFL, the main fuzzer

will call the write_to_testcase function to save the test case to

the disk for each execution, so as to facilitate subsequent

analysis and reproduction.

In WinAFL, the write_to_testcase function is often

executed after file mutation. Its main function is to read the

binary stream of the seed file that is ready to be executed for

testing into memory and write this part of the binary stream

into the current input file, which is by default the ".cur_input"

file specified by WinAFL's output directory, but can also be a

specified file. Then WinAFL will call the run_target function

to launch the target program and input this file into the target

program.

4. Algorithm Framework

In general, when performing fuzzing on PDF files, the

common method is to use PDF files as seed files. In this article,

in order to mutate the image part, the seed file is replaced with

an image format. Then, the write_to_testcase function is

hijacked to replace the original operation of directly inputting

the binary stream into the ".cur_input" file with custom

operations. Specifically, after hijacking the write_to_testcase

function, a custom script is used to manipulate the test case so

that each test case written to disk contains a mutated image.

Then, the run_target function was called to input the

embedded PDF file into the target program. The modified

process is shown in Figure 6.

hijack

Mutation

 testcase

Mutated Image

Testcase

Generate a PDF

testcase with

mutated image

The old

write_to_testcase

function

×
PDF testcase

(contain the

mutated image)

Figure 6: Schematic diagram of the algorithm flow

81

Through the function hijacking operation described above,

the range of file mutation in the PDF file can be successfully

narrowed down to a specific part, thereby improving the

quality of test cases.

To implement the above method and achieve better

scalability, I chose to use a mixed compilation of Python and

C language. Python has a large number of powerful library

functions, and the code is concise and easy to maintain. At the

same time, it can be easily embedded in C language.

5. Experiment and Analysis

This paper improves fuzzing method based on WinAFL

1.16b (Based on AFL 2.43b). The experiment was deployed

on a VMware virtual machine with 8GB memory, 8 cores, and

12th Gen Intel(Rz) Core(TM) i7-12700H CPU running 64-bit

Windows 21H2. WPS PDF reader and pdf-x-change were

selected as the targets, with each program running for 24

hours and the test results taken as the average of 3 tests. The

experimental results for these two target programs are shown

in Table 1.

Table 1. Comparison of experimental results

The results show that the optimized WinAFL outperforms

the native WinAFL in both the number of crashes discovered

and the number of paths discovered for these two target

programs. For WPS PDF reader, the number of paths

discovered increased by 40.94%, and the number of crashes

discovered increased by 26. For pdf-x-change, the number of

paths discovered increased by 45.62%, and the number of

crashes discovered increased by 113. Overall, the

effectiveness of this optimization method is significant, which

demonstrates the feasibility of the approach presented in this

paper.

6. Conclusion

The purpose of this paper is to improve the fuzzing method

in order to increase its efficiency and accuracy for testing PDF

files. In order to mutate the image part of PDF files, this paper

adopts the method of replacing the seed file with image

format and controlling the test case generation process by

hijacking the write_to_testcase function. In the

implementation, the optimization method was implemented

by using a mixed compilation of Python and C, while WPS

PDF reader and pdf-x-change were later selected as the target

programs for testing. The experimental results show that the

method proposed in this paper has a significant improvement

effect, proving its feasibility and practicality in the field of

PDF file testing. For the subsequent research direction, I will

use similar ideas to achieve the improvement of fuzzing

methods for PDF documents in "otf", "ttf" and other font file

formats, and will also try to use the overall change of PDF

structure. In addition, I will try to use the overall variation of

PDF structure to enrich the diversity of PDF document

variants.

References

[1] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,”
Cybersecurity, vol. 1, no. 1, pp. 1–13, 2018.

[2] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, “A
systematic review of fuzzing techniques,” Computers &
Security, vol. 75, pp. 118–137, 2018.

[3] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
understanding bugs in C compilers,” in Proceedings of the
32nd ACM SIGPLAN conference on Programming language
design and implementation, 2011, pp. 283–294.

[4] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and
A. Roychoudhury, “ Smart greybox fuzzing ” IEEE
Transactions on Software Engineering, vol. 47, no. 9, pp.
1980–1997, 2019.

[5] M. Zalewski, "American fuzzy lop (afl) - a security-oriented
fuzzer," Online. Available: http://lcamtuf.coredump.cx/afl/.
[Accessed: Mar. 6, 2023].

[6] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-
based greybox fuzzing as markov chain,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1032–1043.

[7] DynamoRIO Dynamic Instrumentation Tool Platform.
Available online: https://dynamorio.org/page_home.html
(accessed on March 6, 2023)

[8] “WinAFL.” Google Project Zero, Mar. 06, 2023. Accessed:
Mar. 07, 2023. [Online]. Available:

https://github.com/googleprojectzero/winafl

[9] Adobe Systems Incorporated. (2018). PDF Reference (sixth
edition): Adobe Portable Document Format version 1.7
[Online]. Available:

https://www.adobe.com/devnet/pdf/pdf_reference_archive.ht
ml.

Target

Program
Fuzzer Total Paths Comparison

Unique

Crashes
Comparison

WPS PDF

reader

WinAFL 513

+40.94%

35

+74.29%
Optimized

WinAFL
723 61

pdf-x-

change

WinAFL 833

+45.62%

175

+64.57%
Optimized

WinAFL
1213 288

